
Bayesian Vision for Shape Recovery

André Jalobeanu

USRA / RIACS, Bayesian Vision Group (P. Cheeseman)
NASA Ames Research Center MS 269-4

Moffett Field CA 94035-1000, USA
email:ajalobea@riacs.edu

Abstract. We present a new Bayesian vision technique that aims at recovering a shape from two
or more noisy observations taken under similar lighting conditions. The shape is parametrized by a
piecewise linear height field, textured by a piecewise linear irradiance field, and we assume Gaussian
Markovian priors for both shape vertices and irradiance variables. The modeled observation process,
equivalent to rendering, is modeled by a non-affine projection (e.g. perspective projection) followed
by a convolution with a piecewise linear point spread function, and contamination by additive
Gaussian noise. We assume that the observation parameters are calibrated beforehand.

The major novelty of the proposed method consists of marginalizing out the irradiances consid-
ered as nuisance parameters, which is achieved by a hierarchy of approximations. This reduces the
inference to minimizing an energy that only depends on the shape vertices, and therefore allows
an efficient Iterated Conditional Mode (ICM) optimization scheme to be implemented. A Gaussian
approximation of the posterior shape density is computed, thus providing estimates of both the ge-
ometry and its uncertainty. We illustrate the effectiveness of the new method by shape reconstruction
results in a 2D case. A 3D version is currently under development and aims at recovering a surface
from multiple images, reconstructing the topography by marginalizing out both albedo and shading.

1. INTRODUCTION

In this work, we investigate the general problem of recovering a shape from a set of
corrupted projections (i.e. observations) using an original Bayesian approach. We clearly
define the proposed approach, which uses a hierarchy of approximations to marginalize
out all the nuisance parameters. We justify the model and algorithm choice (at least
experimentally in a 2D case). Future work will extend it to the more realistic 3D
framework, the final goal being to recover a 3D surface geometry from multiple 2D
images in an efficient and robust way. At first, the lighting and the spatially variable
reflectance properties of this surface should be treated as nuisance parameters. Once the
surface is estimated this way, we could infer both reflectance properties and lighting.

In 2D, the problem is defined as follows. The surface is a Lambertian emitter defined
by a finite curve parametrized by a set ofNv verticesv = {vk} (index k), and has
an irradiance field attached to it, parametrized by a set of irradiance variablesL =
{Lj} (index j). There are at least 2 pinhole cameras (parametrized by the setΘ =
{Θn}: position, orientation, etc.) that record the intensity signals{Xn} (indexn) after
projecting the irradiance onto a segment, as shown on Fig. 1. The intensity is sampled
after convolution with a sampling kernel, or point spread function (PSF), denoted byh.
Then it is corrupted by a white additive Gaussian noise of varianceσ2. Our goal is to
provide an estimate of thegeometryv as well as theuncertaintyrelated to this estimate.
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FIGURE 1. Left: the geometry configuration in the object space, showing the 2 cameras.Right: the
intensityXn recorded by each camera. The irradiance fieldL is not shown here (we choose a smooth sine
function with values between 0.2 and 0.8).

To address this problem, we use a Bayesian framework [2]. To simplify it and get an
efficient and stable inference procedure, we make a few assumptions about the lighting
scheme. We assume similar lighting conditions (as in a stereo setting), which enables
us to consider asingle irradiance fieldL attached to the surface, acting as a texture.
Usually a surface is parametrized by an albedo fieldρ and a reflectance functionf , and
the irradianceL ∝ ρf . If we assume that we have similar lighting conditions between
images, and thatf does not depend on the angle between surface and camera, thenf
is constant from one image to another (though spatially variable), therefore we can re-
parametrize by the irradiance.

We can summarize our contributions as follows. First, we derive a model of the un-
known surface by choosing an appropriateparametrizationand efficientpriors to stabi-
lize the solution. Second, we show how to choose an appropriatediscretization scheme
by understanding the image formation process. Finally, as mentioned above,irradiances
are used as parameters. We treat them as nuisance parameters andmarginalizethem out,
deriving a computationally efficienthierarchy of approximations.

2. THE FORWARD PROBLEM

2.1. Generative model and posterior distribution

We assume that all the parameters are random variables governed by a joint proba-
bility distribution. The relationships between all these variables are given as a graphical
model in Fig. 2 (left), where each arrow represents a conditional density, and each leaf
node a prior density. We assume a smoothness prior onv, unless a surface estimate is



given. In all cases we choose to use a Gaussian distribution. The camera parametersΘ
are assumed known (i.e. Dirac distribution). The observations{Xn} are assumed to be
independent and corrupted by a zero-mean white Gaussian noise of varianceσ2. There-
fore the conditional density of an observation given the surface and camera parameters
is an iid Gaussian of mean denoted byI, and varianceσ2.

For each sample point or pixelp, the intensityIp(v,L,Θ) is synthesized from the
surface(v,L) using the camera parametersΘ (this is also known asrendering, and it is
a deterministic process described in Section 2.4).

The likelihood of both surface and camera parameters is:

P ({Xn}|v,L,{Θn}) =
1

Zσ

e−U(v,L) with U(v,L) =
1

2σ2

∑
n,p

(
Ip(v,L,Θn)−Xn

p

)2
(1)

Θ

X

Θ

X

Θ

X

Θ

X
1

1

2 3

n

n

32

Θ XIλP

v L

v L

projection pixel
integration formation

image

Rendering
σ

FIGURE 2. The image formation model.Left: the multi-image graphical model.Right: the detailed
model for one image (circles and rectangles respectively represent stochastic and deterministic processes).

2.2. Surface parametrization and topology

We parametrize the geometry by a set of coarse vertices{vk} using segments as
shown on Fig. 3. To constrain the vertices, we parametrize them by a height fieldz(x):
we havevk = (xk, zk), where thexk form a fixed grid (uniform in our experiment).

Each segment is subdivided intoNs (equally spaced in our test case) sub-segments
containingNs−1 aligned fine vertices{vj} which define the irradiance fieldL. The ir-
radiance has ahigher resolutionthan the geometry. There are multiple ways of choosing
the irradiance model: it can be piecewise constant between the fine vertices (Lj lies be-
tween 2 fine vertices), or piecewise linear (Lj is defined on the vertexvj), as illustrated
by Fig. 3. We will explain in Section 2.4 why a piecewise linear irradiance is preferred.
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FIGURE 3. The geometry parametrization and topology (subdivided segments), and the 2 possible
irradiance models (piecewise linear and piecewise constant).



2.3. The geometry and irradiance priors

To stabilize the solution, in our 2D experiments we use very simple and spatially
invariant smoothness priors on both heights and irradiances, corresponding to first order
Markov chains (nearest neighbor interactions), with normalizing constantsZα andZβ:

P (v) =
1

Zα

e−αΦ(v) where Φ(v) =
∑

k

(
zk+1− zk

)2
(2)

P (L) =
1

Zβ

e−αΦ(L) where Φ(L) =
∑

j

(
Lj+1−Lj

)2
(3)

More complex priors should be used if spatial adaptivity is required, or if discontinuities
need to be modeled. Using efficient priors is important when dealing with missing or
insufficient data (in real scenarios, some parts of the surface may be hidden) [4].

2.4. The deterministic image formation process

We focus here on the rendering process, or how to obtain discrete pixel intensities
Ip from the set of verticesv and irradiancesL in several steps (see Fig. 2 right). Each
vertexvj is projected according to the followingnon-linearpinhole camera model (this
is equivalent to a perspective projection in 3D). Here,u denotes the observing direction,
T the camera location andF, c are constants related to internal camera parameters:

Pj
x(v

j,Θ) = F
xjuz− zjux +Tx

xjux + zjuz +Tz

+ c with Θ = {u,T,F,c} (4)

andPj denotes the projected vertex. If we have a linear irradiance model between fine
vertices, the projected irradiance fieldL is assumed to be also linear (even though the
projection is not). The intensity for each pixelIp is obtained by first convolvingL with
a PSFh, then point sampling on a regular grid{p}: Ip = (L?h)(p).

The PSF can be decomposed as a discrete sum of translated sampling kernelsΛ,
so thatIp is obtained by convolution with a fixedΛ, sampling and then a discrete
convolution of the pixel values which can be taken out of the rendering. For simplicity,
we ignore this last convolution and assume thath = Λ.

SinceL is a linear function of{Lj}, we can write the rendering equation [3] as:

Ip =
∑

j

λj
p Lj where λj

p = function ofP(v,Θ) (5)

Then an important question arises: what kernel should we use? The simplest would be a
normalized box functionh(x) = 1 with x ∈ [−0.5,0.5]. However, we might need a more
continuous one, such as the hat functionh(x) = 1−|x| with x ∈ [−1,1].

We have implemented the 4 possible combinations of piecewise linear and constant
models for both irradiance and sampling kernel, and studied the behavior of the energy
U(v,L,Θ) relative to one of the images, when one of the vertex heightszk varies (all
others being equal to their true value). Fig. 4 clearly illustrates the fact that choosing



linear models for both irradiance and sampling is the only way to get a smooth en-
ergy function, withcontinuous derivatives. For non-boundary vertices, linear irradiance
seems to be sufficient; however if we consider vertices located at object boundaries (or
occlusion boundaries), the model is discontinuous so we need a continuous sampling
scheme, i.e. a continuous PSFh, to achieve the desired smoothness.

Smoothness is important because any deterministic optimization algorithm has little
chance of converging to the global optimum if there are discontinuities in the derivatives
(on the left figure, the local minima are quite obvious!). For computational reasons, we
do not intend to use stochastic techniques such as simulated annealing to get around
local minima problems.
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FIGURE 4. Variation of the energyU of Eqn. (1) as a function of one of the vertices (fixed irradianceL).
Left: non-boundary vertex, piecewise linear vs. piecewise constant irradiance modelL. Right: boundary
vertex, piecewise linear vs. piecewise constant sampling kernelh. Remark: the energy is far more sensitive
to boundary than interior vertices.

3. THE INVERSE PROBLEM: BAYESIAN INFERENCE

Computer vision, or model reconstruction from observations, can be seen as theinverse
problem of rendering. Bayesian inference [2] is an efficient way to deal with such
ill-posed inverse problems. In the Bayesian framework, model recovery becomes a
parameter estimation problem (more precisely, we estimate parametric pdfs), which is
achieved by using existing efficient optimization algorithms.

Using Bayes’ rule and the graphical model of Fig. 2 (left) we get the joint posterior:

P (v,L,{Θn}|{Xn})∝ P (v)P (L)
∏

i

P (Xn|v,L,Θn)P (Θn) (6)

where the the likelihood is given by Eqn. (1) and the priors by Eqns. (2)- (3).
It is well-known in Bayesian inference that one should integrate the posterior over all

unwanted, or nuisance parameters [1], to achieve a good stability: in our case, the camera
parameters and the irradiances should be marginalized out. Camera marginalization is
simple, i.e. we assumed a Dirac distribution forΘ. Handling the more realistic case of
uncertain camera pose is still work in progress.



3.1. Irradiance marginalization, approximations

We need to calculate the following integral to marginalize out the irradianceL:

P (v|{Xn}) =

∫
Ω

P (v,L|{Xn})dL∝ P (v)

∫
Ω

e−U(v,L)−βΦ(L) dL (7)

whereU is defined in Eqn. (1),P (v) in Eqn. (2) andΦ in Eqn. (3). This can be achieved
by using a Laplace approximation, assuming that the integrand can be well approximated
by a multivariate Gaussian distribution. The integrand is proportional to the posterior
P (L|v,{Xn}) (fixed vertices), which is a Gaussian distribution if we assume unbounded
irradiances (sinceIp is linear inL, U is quadratic inL, and we also have a quadratic
penaltyΦ defined by Eqn. (3)). For physical reasons, the irradiance is positive and
bounded, so the distribution is not rigorously Gaussian. We will assume that the data
constrains it to take values far enough from the bounds to ensure the validity of the
Laplace approximation. Now we need to calculate the determinant of the covariance
matrix [Ξ], and the optimum (MAP) ofL given the current geometryv, so that:

P (v|{Xn})∝ P (v)
1√
|Ξ|

e−U(v,L̂)−βΦ(L̂) (8)

L̂(v) = argmax
L

P (L|v,{Xn}) = argmin
L

[
U(v,L)+βΦ(L)

]
(9)[

Ξ−1
]
ij

=
∂2

∂Li∂Lj

[
U(v,L)+βΦ(L)

]
L̂(v)

(10)

Experiments have shown that the -log|Ξ| compared to the termU(v, L̂) + βΦ(L̂) has
negligible variations when changing vertex heightszk, so that it can be neglected when
optimizing w.r.t. vertices (see Fig. 5 for an illustration).
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FIGURE 5. Solid line: marginal energyUm as a function of one of the vertex heightszk, computed with
the proposed approximation; Dashed line: the normalizing constant that was neglected in this computation.

The optimum of Eqn. (9) can be computed by a diagonal Newton-Raphson descent al-
gorithm; a few steps proved to be sufficient for convergence. However, it is preferable to
have aclosed-form approximationof this optimum, which helps calculate the derivatives
required for the maximization of the marginal (7), as it will be explained in Section 3.2.
We propose one that gives good results in practice, despite the absence of regularization,
making optimization search unnecessary. It only involves the weightsλ defined by Eqn.
(5), and{Xn}. The accuracy is best when these weights are close to 0 or 1.

L̂j(v)'
∑

n,p

(
λj

p

)n
Xn

p∑
n,p

(
λj

p

)n (11)



What makes the marginalization computationally efficient in the proposed approach
can be described as ahierarchy of approximations: 1) Laplace approximation Eqns. (8)-
(10), 2) negligible variations of log-normalizing constant in Eqn. (8), 3) closed-form
solution given by Eqn. (11) to the optimal irradiance of Eqn. (9).

Finally we propose the following approximation of the marginalized posterior, so that
the entire problem reduces to minimizing the marginal energy denoted byUm(v):

P (v|{Xn})∝ e−Um(v) where Um(v) = U
(
v, L̂(v)

)
+βΦ

(
L̂(v)

)
− logP (v) (12)

We verify once again that we have made the right choice regarding both irradiance and
sampling models: on Fig. 6 the oscillations related to piecewise constant models become
quite obvious, and often lead to local minima, and in some cases a bias is noticeable (the
global optimum is not the closest to the true value). For boundary vertices the linear
sampling scheme is the only one to provide an acceptable marginal energy function.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.7  0.75  0.8  0.85  0.9  0.95  1  1.05  1.1

lin L lin h
const L lin h
lin L const h

const L const h

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.4  0.45  0.5  0.55  0.6  0.65  0.7

lin L lin h
const L lin h
lin L const h

const L const h

FIGURE 6. Variation of the marginal energyUm defined in Eqn. (12) as a function of one of the
vertices, piecewise linear vs. piecewise constant irradianceL and samplingh. Left: non-boundary vertex.
Right: boundary vertex, only one curve is smooth on the entirex range (linearL andh). Remark: the
marginal energy is far more sensitive to boundary than interior vertices.

3.2. Computing the derivatives

In order to achieve surface recovery via deterministic minimization of the marginal
energyUm(v), we need to compute the derivatives of this energy w.r.t. vertices. This re-
quires us to compute the derivatives of the rendered intensityI, of the optimal irradiance
L̂ and of the prior penalty termsΦ. To do this, we use the chain rule, accounting for the
graph structure of all variables involved [3].

For the rendered intensity, given the graph structure in Fig. 2 (right) we get the
following expression when the irradiance is a function of the vertices:[

∂Ip

∂vk

]
=
∑

j

([
∂Ip

∂λj
p

][
∂λj

p

∂Pj

][
∂Pj

∂vj

]
+

[
∂Ip

∂L̂j

][
∂L̂j

∂vj

])[
∂vj

∂vk

]
(13)

This derivative is involved in the first and second derivatives of the marginal energyUm:



[
∂Um

∂vk

]
=

1

σ2

∑
n,p

(
In
p −Xn

p

)[∂In
p

∂vk

]
+α

[
∂Φ(v)

∂vk

]
+β

∑
j

[
∂Φ(L̂)

∂L̂j

][
∂L̂j

∂vk

]
(14)

[
∂2Um

∂vk∂vl

]
' 1

σ2

∑
n,p

[
∂In

p

∂vk

][
∂In

p

∂vl

]
+α

[
∂2Φ(v)

∂vk∂vl

]
+β

∑
j

[
∂2Φ(L̂)

∂vk∂L̂j

][
∂L̂j

∂vl

]
(15)

whereIn
p refers to then-th intensity image rendered with the camera parametersΘn.

We approximate the second derivatives ofUm by neglecting the contribution of the
second derivatives of the intensity and the optimal irradianceL̂. Here we can see that we
also need to compute the derivative of the optimal irradianceL̂, hence the advantage of
having a closed-form expression (function ofv) such as the one in Eqn. (11).

3.3. The surface recovery algorithm

The goal of the reconstruction algorithm is to provide a Gaussian approximation of
the posterior marginalP (v|{Xn}). To achieve this, we need to compute the modev̂ of
this distribution, which is equivalent to minimizing the energyUm defined in Eqn. (12)
w.r.t. the geometryv. Then we need a quadratic approximation of this energy around the
optimum, hence the second derivatives taken atv̂. The covariance matrix[Σ] given in
Eqn. (15) provides an measure of the uncertainty on the geometry estimatev̂:[

Σ−1
]
kl

=

[
∂2Um

∂vk∂vl

]
v̂

(16)

Keeping the inverse covariance matrix at the end of the reconstruction enables us to
build arecursive updatealgorithm, by using this Gaussian approximation as a prior for
the next surface estimation process. This way, data can be added to the modelsequen-
tially. Furthermore, we can remove the restrictive assumptions about the lighting, by
processing sets of images with similar lighting conditions simultaneously, and combin-
ing the different sets recursively.

The proposed optimization algorithm is iterative, and at each step the rendering
process is linearized around the current estimateṽ using the intensity derivatives (13):

Ip

(
v, L̂,Θ

)
' Ip

(
ṽ, L̂(ṽ),Θ

)
+
∑

k

[
∂Ip

∂vk

](
vk− ṽk

)
(17)

This makesU(v, L̂) a quadratic form inv. Since we choose quadratic penalty functions
for the prior defined in Eqn. (2),Um is also quadratic inv.

Moreover, it has afirst order Markov structurewhen there are no occlusions (the
dependence is limited to the first order neighbors). Therefore, optimizing this quadratic
form is best achieved by an Iterative Conditional Mode (ICM) procedure, which benefits
from the local dependence structure. Because of the very limited dependence, using
a conjugate gradient in this case is clearly not a good choice, as our experiments
have shown. In practice, given the weak dependence between vertices, anindependent
optimizationturned out to be very efficient, and was achieved by using a diagonal quasi-
Newton descent technique, using the derivatives given by Eqns. (14) and (15):



ṽk← ṽk−
[
∂Um

∂vk

][
∂2Um

∂(vk)2

]−1

(18)

We also noticed that an accurate optimization of the quadratic formUm does not help
increase the computation speed nor the result quality, since linearization is only a rough
approximation. We did not observe any improvement from one to multiple iterations,
therefore we do not recommend more thanone stepof descent before recomputing the
local quadratic form around the updated geometry estimate.

The proposed algorithm is summarized as follows:

• Input: {Xn},{Θn},σ2.
• Initialization: ṽ = constant (or a previous estimate if available);
• Repeatuntil convergence:

– Irradiance marginalization: computeL̂(ṽ), Eqn. (11);
– Intensity and irradiance derivatives: Eqn. (13), derivative of Eqn. (11);
– First and second derivatives ofUm: Eqns. (14)-(15);
– One step diagonal quasi-Newton update:Eqn. (18).

• Inverse covariance estimation:Eqn. (16).
• Output: geometrŷv = ṽ, inverse covariance[Σ−1].

The Bayesian approach enables us to automatically estimate the regularization param-
etersα andβ, as well as the subdivision levelNs (i.e. model selection, via Bayes fac-
tors). This has been investigated in our experiments, but it is not described in this paper.
Moreover, the segment subdivision level could be selected locally and dynamically (in
the inner loop of the algorithm), depending on the current local geometry.

4. 2D EXPERIMENT: RESULTS AND CONCLUSIONS

The reconstruction algorithm has been successfully applied to the problem described in
the introduction, and the results are shown on Fig. 7. We haveσ = 0.01 in this experiment
(1% of the intensity range, sinceIp ∈ [0,1]). The reader can evaluate the reconstruction
quality by observing the estimated vertices and the error bars (corresponding to a
marginal posterior probability greater than 0.1, computed using the estimated inverse
covariance). The plot on the right shows the joint distribution of 3 pairs of vertices
conditioned upon all others: only nearest neighbors interact and can therefore be strongly
correlated (the correlation decays exponentially with the distance). The coarse segments
are larger than pixels, otherwise there would be longer range interactions. This means
that the inverse covariance matrix is sparse: it is possible to store it along with the
surface estimate and to use it as a prior for subsequent inferences.

The main conclusions of the 2D experiments are: 1)continuous modelsfor both ir-
radiance and sampling should be used to ensure the continuity of the energy functions;
2) irradiance marginalizationreduces the problem dimension from(Ns +1)Nv irradi-
ances+vertices toNv vertices, also strongly reducing theinteraction structure; 3) we
observed that marginalization also makes the energy landscape morequadratic, making
the use of Newton-like techniques appropriate.
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5. EXTENSION TO 3D AND FUTURE WORK

To extend this promising approach to a more useful 3D framework, we use subdivided
triangular meshes.Hidden surface removalis a crucial to rendering in 3D (we assumed
there were no occlusions in our 2D experiments). This is achieved through a recursive
approach to subtract triangles from a polygon [4]. Rendering using continuous irradiance
and PSF is made possible by computing the moments of the visibility polygons [3].

In 3D, the goal is to first infer the scene geometry, using a 3D equivalent of the method
described in this paper (see [3]), then to infer the albedo and reflectance using the esti-
mated geometry (empirical Bayes approach). Simultaneous reconstruction andcamera
calibrationcould also be addressed through marginalization. To achieve accurate surface
recovery, designing and studying realisticprior models[4] is needed. Bayesianmodel
selectionshould be considered if a spatially adaptive mesh subdivision is required.

The approach presented here should be sufficiently general to apply to other inverse
problems related to shape recovery from projections (e.g. 2D or 3D tomography).
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